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Bell inequalities rest on three fundamental assumptions: real-
ism, locality, and free choice, which lead to nontrivial constraints
on correlations in very simple experiments. If we retain real-
ism, then violation of the inequalities implies that at least one
of the remaining two assumptions must fail, which can have
profound consequences for the causal explanation of the exper-
iment. We investigate the extent to which a given assump-
tion needs to be relaxed for the other to hold at all costs,
based on the observation that a violation need not occur on
every experimental trial, even when describing correlations vio-
lating Bell inequalities. How often this needs to be the case
determines the degree of, respectively, locality or free choice
in the observed experimental behavior. Despite their disparate
character, we show that both assumptions are equally costly.
Namely, the resources required to explain the experimental statis-
tics (measured by the frequency of causal interventions of either
sort) are exactly the same. Furthermore, we compute such defined
measures of locality and free choice for any nonsignaling statis-
tics in a Bell experiment with binary settings, showing that it
is directly related to the amount of violation of the so-called
Clauser–Horne–Shimony–Holt inequalities. This result is theory
independent as it refers directly to the experimental statis-
tics. Additionally, we show how the local fraction results for
quantum-mechanical frameworks with infinite number of set-
tings translate into analogous statements for the measure of free
choice we introduce. Thus, concerning statistics, causal explana-
tions resorting to either locality or free choice violations are fully
interchangeable.

locality | free choice | causality | Bell inequalities |
measure of locality and free choice

I would rather discover one true cause than gain the kingdom
of Persia.

Democritus (ca. 460–370 BC)

The study of experimental correlations provides a win-
dow into the underlying causal mechanisms, even when

their exact nature remains obscured. In his seminal works
(1–5) John Bell showed that seemingly innocuous assump-
tions about the structure of causal relationships leave a mark
on the observed statistics. The first assumption, called real-
ism (or counterfactual definiteness), presents the worldview in
which physical objects and their properties exist, whether they
are observed or not. Note that realism allows a standard notion
of causality (6, 7), which in turn provides us with the lan-
guage to express the remaining two assumptions. The local-
ity assumption is a statement that physical (or causal) influ-
ences propagate in accord with the spatiotemporal structure
of events (i.e., neither backward in time nor instantaneous
causation). The free-choice assumption asserts that the choice
of measurement settings can be made independently from
anything in the (causal) past. These three assumptions are
enough to derive testable constraints on correlations called Bell
inequalities.

Surprisingly, nature violates Bell inequalities (8–15), which
means that if the standard causal (or realist) picture is to be
maintained at least one of the remaining two assumptions, that
is locality or free choice, has to fail. It turns out that rejecting
just one of those two assumptions is always enough to explain
the observed correlations, while maintaining consistency with the
causal structure imposed by the other. Either option poses a chal-
lenge to deep-rooted intuitions about reality, with a full range of
viable positions open to serious philosophical dispute (16–18).
Notably, quantum theory in its operational formulation does not
provide any clue regarding the causal structure at work, leaving
such questions to the domain of interpretation. It is therefore
interesting to ask about the extent to which a given assump-
tion needs to be relaxed, if we insist on upholding the other
one (while always maintaining realism). In this paper, we seek
to compare the cost of locality and free choice on an equal foot-
ing, without any preconceived conceptual biases. As a basis for
comparison we choose to measure the weight of a given assump-
tion in terms of the following question: How often can a given
assumption, i.e., locality or free choice, be retained, while safe-
guarding the other assumption, in order to fully reproduce some
given experimental statistics within a standard causal (or realist)
approach?

This question presumes that a Bell experiment is performed
trial-by-trial and the observed statistics can be explained in the
standard causal model (or hidden variable) framework (1–7,
19–21), which subsumes realism. It means that the remaining
two assumptions of locality and free choice translate into con-
ditional independence between certain variables in the model,
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whose causal structure is determined by their spatiotemporal
relations (6, 22) (for some alternative approach endorsing indef-
inite causal structures see, e.g., refs. 23 and 24 or ref. 25 for
discussion of retrocausality). Modeling of the experiment implies
that in each run of the experiment all variables (including unob-
served or hidden ones) always take definite values and the
statistics accumulate over many trials. This leaves open the possi-
bility that the violation of the assumptions does not have to occur
on each run of the experiment to explain the given statistics. We
can thus put flesh on the bones of the above question and seek
the maximal proportion of trials in which a given assumption can
be retained, while safeguarding the other assumption, so as to
fully reproduce some given statistics. In the following, we shall
denote so defined measure of locality (safeguarding freedom of
choice) as µL and measure of free choice (safeguarding locality)
as µF . Also, without stating this in every instance, we note that in
all subsequent discussion realism is assumed.∗

There has been some previous research on this theme. A mea-
sure of locality analogous to µL was first proposed by Elitzur et al.
(27) to quantify nonlocality in a singlet state. Note that it seems
that the original idea of a bound for such a locality measure was
expressed earlier, in ref. 28, but a bound was not worked out. In
any case, Elitzur et al.’s measure was dubbed “local fraction” (or
“content”) and shown (with improvements in refs. 29–31) to van-
ish in the limit of an infinite number of measurement settings.
A substantial step was made in ref. 32, where the local frac-
tion is explicitly calculated for any pure two-qubit state for an
arbitrary choice of settings. We note that those results concern
measure µL only for the specific case of quantum-mechanical
predictions. In this paper we go beyond this framework and
consider the case of general experimental statistics (see ref.
33 for extension to the idea of contextuality). To avoid confu-
sion, the term “local fraction” for measure µL will be only used
in relation to the quantum case. Furthermore, we propose a
similar treatment of the free-choice assumption quantified by
measure µF . Natural as it may seem, this approach has not been
pursued in the literature, with some other measures proposed
to this effect (34–42) [all retaining locality as a principle, but
departing from the original notion of free choice introduced by
Bell (6, 22)].

We aim to comprehensively consider the extent to which a
given assumption, i.e., locality or free choice, can be preserved
through partial violation of the other assumption. To accom-
plish this, we provide similar definitions and discuss on an equal
footing both measures of locality µL and free choice µF . Then,
we derive the following results. First, we prove a general struc-
tural theorem about causal models explaining any given exper-
imental statistics in a Bell experiment (for any number of set-
tings) showing that such defined measures are necessarily equal,
µL =µF . This result consolidates those two disparate concepts,
demonstrating their deep interchangeability. Second, we explic-
itly compute both measures for any nonsignaling statistics in a
two-setting and two-outcome Bell scenario. This enables a direct
interpretation to the amount of violation of the Clauser–Horne–
Shimony–Holt (CHSH) inequalities (43). Third, we consider the
special case of the quantum statistics with infinite number of set-
tings, utilizing existing results for the local fraction µL, which thus
translate on the newly developed concept of the measure of free
choice µF . Fig. 1 summarizes the results in the paper.

*As noted, realism is subsumed in the standard notion of causality, which is implicit in
the definition of locality and free choice (1–6). So, henceforth, referring to the stan-
dard causal framework implies the realist approach. We also remark that, although,
“realism” goes under different guises in the literature (e.g., “counterfactual definite-
ness,” “local causality,” “hidden causes,” etc.), for our purposes those distinctions are
irrelevant and the underlying mathematics remains the same, i.e., it boils down to
the hidden-variable framework [which beyond physics is frequently referred to as the
structural causal models (7)]. See refs. 3 and 26 for some discussion.

(   )

(   )

Fig. 1. Summary of the results. The main Theorem 1 is the backbone of
the paper, consolidating both measures of locality µL and free choice µF .
Theorem 2 is a theory-independent result about both measures µL and
µF . It offers a concrete interpretation for the amount of violation of the
CHSH inequalities. Theorems 3 and 4 are specific to the quantum-mechanical
statistics stated here for measure µF . They are translations of some remark-
able local fraction results µL in the literature (marked with an (*); cf. refs.
29–32).

Results
Bell Experiment and Fine’s Theorem. Let us consider the usual Bell-
type scenario with two parties, called Alice and Bob, playing the
roles of agents conducting experiments on two separated systems
(whose nature is irrelevant for the argument). We assume that
on each side there are two possible outcomes labeled respec-
tively a, b =±1 and M possible measurement settings labeled
respectively x , y ∈M, where M≡{1, 2 , . . . ,M }. A Bell exper-
iment consists of a series of trials in which Alice and Bob
each choose a setting and make a measurement registering the
outcome. After many repetitions, they compare their results
described by the set of M ×M distributions {Pab|xy}xy , where
Pab|xy denotes the probability of obtaining outcomes a, b, given
measurements x , y were made on Alice and Bob’s side, respec-
tively. For conciseness, following the terminology in ref. 5, we will
call {Pab|xy}xy a “behavior.” Note that without assuming anything
about the causal structure underlying the experiment any behav-
ior is admissible (as long as the distributions are normalized, i.e.,∑

a,b
Pab|xy = 1 for each x , y ∈M). In particular, quantum the-

ory gives a prescription for calculating the experimental statistics
Pab|xy for each choice of settings x , y ∈M based on the formalism
of Hilbert spaces.

It is instructive to recall the special case of two measurement
settings on each side x , y ∈M= {0, 1} for which Bell derived his
seminal result. Briefly, this can be expressed by saying that any
local hidden-variable model with free choice has to satisfy the
following four CHSH inequalities (43):

|Si | 6 2 for i = 1, . . . , 4, [1]

where

S1 = 〈ab〉
00

+ 〈ab〉
01

+ 〈ab〉
10
−〈ab〉

11
, [2]

S2 = 〈ab〉
00

+ 〈ab〉
01
−〈ab〉

10
+ 〈ab〉

11
, [3]

S3 = 〈ab〉
00
−〈ab〉

01
+ 〈ab〉

10
+ 〈ab〉

11
, [4]

S4 = −〈ab〉
00

+ 〈ab〉
01

+ 〈ab〉
10

+ 〈ab〉
11

, [5]

with 〈ab〉xy =
∑

a,b
ab Pab|xy being correlation coefficients for a

given choice of settings x , y . Interestingly, by virtue of Fine’s the-
orem (44, 45), this is also a sufficient condition for a nonsignal-
ing behavior {Pab|xy}xy to be explained by a local hidden-
variable model with freedom of choice (for nonsignaling see
Eqs. 16 and 17).

It is crucial to observe that, although locality and freedom of
choice are two disparate concepts with different ramifications
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for our understanding of the experiment, they are in a certain
sense interchangeable. If locality is dropped with Alice and Bob
freely choosing their settings, then the boxes, by influencing one
another, can produce any behavior {Pab|xy}xy . Similarly, a viola-
tion of the free-choice assumption can be used to reproduce any
behavior {Pab|xy}xy , without giving up locality. It is straightfor-
ward to see how this might work if one of the two assumptions
fails on every experimental trial.†

However, such a complete renouncement of assumptions so
central to our view of nature may seem excessive, especially when
the CHSH inequalities are violated only by a little amount (less
than the maximal algebraic bound of |Si |6 4), leaving room for
a possible explanation of the experimental statistics by rejecting
one of the assumptions sometimes only. Here we assess the cost
of such a partial violation by asking how often a given assump-
tion can be retained in order to account for a behavior {Pab|xy}xy .
We will investigate both cases in parallel: [♠] full freedom of
choice with occasional nonlocality (communication) and [♣] the
possibility of retaining full locality at a price of compromising
freedom of choice (by controlling or rigging measurement set-
tings) on some of the trials. We shall use the least frequency of
violation, required to model some statistics with a hypothetical
simulation, as a natural figure of merit, guided by the principle
that the less the violation the better. Notably, such simulations
should not restrict possible distributions of measurement settings
Pxy . In other words, we define a measure of locality µL as

the maximal fraction of trials in which Alice and
Bob do not need to communicate trying to simulate a
given behavior {Pab|xy}xy , optimized over all conceivable
strategies with freely chosen settings.

[♠]

Similarly, we define a measure of free choice µF as

the maximal fraction of trials in which Alice and Bob can
grant free choice of settings in trying to simulate a given
behavior {Pab|xy}xy , optimized over all conceivable local
strategies.

[♣]

In the quantum-mechanical context the measure µL is called
a local fraction (27–32). By analogy, when considering the
quantum-mechanical statistics the measure µF might be called
a free fraction. This provides an equal basis for comparing the
two assumptions within the standard causal (or realist) approach,
which we formalize in the following section.

Causal Models, Locality, and Free Choice. The appropriate frame-
work for the discussion of locality and free choice is provided
by hidden-variable models (1–5). First, a hidden-variable model
allows a formal statement of the realism assumption, understood
to mean that properties of a physical system exist irrespective
of an act of measurement (counterfactual definiteness). Second,
hidden-variable models provide the causal language in which the
locality and free choice assumptions are expressed (6, 7). The
locality assumption conveys the requirement that the propaga-
tion of physical (or causal) influences have to follow the spa-
tiotemporal structure of events (i.e., preserve the arrow of time
and respect that actions at a distance require time). The free-
choice assumption concerns the choice of measurement settings
which are deemed causally unaffected by anything in the past

†For the simulation of a given behavior {Pab|xy}xy in a Bell experiment one may proceed
as follows. Upon rejection of locality, in each trial the system on Alice’s side, one may
not only use input x but also y to generate outcomes (and similarly for the box on
Bob’s side) that comply with the appropriate distribution. On the other hand, when
freedom of choice is abandoned, both settings x, y may be specified in advance on each
trial and the boxes can be instructed to provide the outcomes needed to simulate the
appropriate distribution. It is, however, unclear how this might work with occasional
violation of the respective assumptions.

(and thus it is sometimes called measurement independence).‡

Both assumptions take the form of conditional independencies
between certain variables in a hidden-variables model.

To make this idea more concrete, let us consider a given set
of probability distributions (behavior) {Pab|xy}xy which describes
the statistics in a Bell experiment. Without loss of generality,
by conditioning on λ in some a priori unknown hidden-variable
space Λ, one can always write (4, 5, 7)

Pab|xy =
∑
λ∈Λ

Pab|xyλ ·Pλ|xy , [6]

where Pλ|xy and Pab|xyλ are valid (i.e., normalized) conditional
probability distributions. The role of the hidden variable (cause
in the past) λ∈Λ, distributed according to some Pλ, is to
provide an explanation of the observed experimental statistics.
This means that at each run of the experiment the outcomes
are described by the distribution Pab|xyλ with λ∈Λ fixed in a
given trial, so that the accumulated experimental statistics Pab|xy

obtains by sampling from some distribution Pλ|xy over the whole
hidden-variable space Λ. It is customary to say that

the choice of space Λ and probability distribution Pλ
along with conditional distributions Pab|xyλ and Pλ|xy sat-
isfying Eq. 6 specify a hidden-variable (HV) model of a
given behavior {Pab|xy}xy .

[#]

Note that such a model implicitly describes the distribution of
settings chosen by Alice and Bob through the standard formula

Pxy =
∑
λ∈Λ

Pxy|λ ·Pλ. [7]

So far the framework is general enough to accommodate
any causal explanation of the statistics observed in the exper-
iment. The assumptions of locality and free choice take the
form of constraints on conditional distributions in [#]. For a
local hidden-variable (LHV) model, we require the following
factorization§ :

Pab|xyλ = Pa|xλ ·Pb|yλ, [8]

for each x , y ∈M and all λ∈Λ. The freedom of choice assump-
tion consists of requiring that λ does not contain any information
about variables x , y representing Alice and Bob’s choice of
measurement settings. This boils down to the independence
condition (6, 22)

Pλ|xy = Pλ (or equivalently Pxy|λ = Pxy), [9]

holding for x , y ∈M and all λ∈Λ. In the following, we will
abbreviate a hidden-variable model with freedom of choice as
an FHV model.

The crucial point is the distinction between local vs. nonlocal
as well as free vs. nonfree situations in the individual runs of the
experiment modeled by Eq. 6. This means that each condition
Eqs. 8 and 9 should be considered separately for each λ∈Λ, i.e.,
whenever the respective condition does not hold for a given λ the
assumption fails on the corresponding experimental trials. Such a

‡As noted, the free-choice assumption is sometimes called measurement independence.
Instead of on the agent, measurement independence is focused on the measurement
devices and possible correlations between their settings, which can affect the observed
statistics. Regardless of interpretation, the mathematics remains the same, with the
source of correlations traced to some common factor (in the causal past).

§Locality can be seen as a conjunction of two conditions: parameter independence
Pa|xyλ = Pa|xλ and Pb|xyλ = Pb|yλ, and outcome independence Pa|bxyλ = Pa|xyλ and
Pb|axyλ = Pb|xyλ. One can show that such defined locality entails the factorization
condition Pab|xyλ = Pa|xλ · Pb|yλ (46).

Blasiak et al.
Violations of locality and free choice are equivalent resources in Bell experiments

PNAS | 3 of 9
https://doi.org/10.1073/pnas.2020569118

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
27

, 2
02

1 

https://doi.org/10.1073/pnas.2020569118


www.manaraa.com

y

Local Non-Loca l

P

only for L

x

LL

BobAlice

a b

‘‘ ‘

‘

Fig. 2. Causal model with some nonlocality (communication). In a Bell sce-
nario, with free choice of settings, correlations between Alice and Bob’s
outcomes have two possible explanations: common cause in the past or
causal influence between the parties. In any causal model the space of hid-
den variables (representing common causes) splits into two disjoint parts
Λ′ = Λ′L ∪Λ′NL distinguished by whether, for a given λ∈Λ′, causal influence
occurs or not (Eq. 10). Then, locality is measured by the proportion of events
when locality is maintained, which is equal to the probability accumulated
over subset Λ′L, i.e., Prob (λ∈Λ′L) ≡

∑
λ∈Λ′L

Pλ.

distinction leads to a natural splitting of the underlying HV space
into two unique partitions Λ = ΛL ∪ΛNL and Λ = ΛF ∪ΛNF . The
first one divides Λ by the locality property

λ∈ΛL ⇔ Eq. 8 holds for all x , y ∈M ,

λ∈ΛNL⇔ Eq. 8 fails for some x , y ∈M,
[10]

while the second one divides Λ by the free-choice property

λ∈ΛF ⇔ Eq. 9 holds for all x , y ∈M ,

λ∈ΛNF ⇔ Eq. 9 fails for some x , y ∈M.
[11]

Figs. 2 and 3 illustrate the causal structures for two extreme
cases: FHV and LHV models (in general built on different
HV spaces Λ′ and Λ′′). The first one grants full freedom of
choice (Λ′= Λ′F ) while allowing for partial violation of locality
(Λ′⊃Λ′L). The second one retains full locality (Λ′′= Λ′′L ) while
admitting some violation of free choice (Λ′′⊃Λ′′F ).

Thus, for a given experimental trial (with λ∈Λ fixed) the con-
straints in Eqs. 10 and 11 indicate, respectively, whether some
nonlocal influence between the parties takes place (λ∈ΛNL)
and whether some influence from the past on the measurement
settings occurs (λ∈ΛNF ). In other words, in a hypothetical sim-
ulation scenario these possibilities correspond to, respectively,
communication or rigging measurement settings. How often this
has to happen depends on the distribution Pλ. This picture lends
itself to quantifying the degree of locality and freedom choice in
a given HV model.

Remark 1. For a given HV model [#] locality is measured by
Prob (λ∈ΛL) ≡

∑
λ∈ΛL

Pλ, and similarly freedom of choice is
measured by Prob (λ∈ΛF ) ≡

∑
λ∈ΛF

Pλ.
This remark captures the intuition of measuring locality

and freedom of choice by considering the proportion of tri-
als when the respective property is maintained across the
whole experimental ensemble. We note that this quantity is

y

Free Non-Free

P

only for
x only for

‘‘‘ ‘

‘‘
‘‘

BobAlice

a b

‘‘

Fig. 3. Causal model with some freedom of choice (rigging). In a Bell sce-
nario, with locality assumption, correlations between the outcomes on Alice
and Bob’s side can be explained by a common cause affecting choice or not
(the latter implies freedom of choice). In any causal model the space of hid-
den variables (representing common causes) splits into two disjoint parts
Λ′′ = Λ′′F ∪Λ′′NF distinguished by whether, for a given λ∈Λ′′, the choice
is free or not (Eq. 11). Then, the parties enjoy freedom of choice only
on the trials when λ∈Λ′′F , which happens with a frequency equal to the
probability accumulated over subset Λ′′F , i.e., Prob (λ∈Λ′′F ) ≡

∑
λ∈Λ′′F

Pλ.

model-dependent, since it is a property of a particular HV
model adopted to explain some given experimental statistics
{Pab|xy}xy (including the distribution of measurement settings
Pxy ; cf. Eq. 7).

The concepts just introduced allow a precise expression for the
informal definitions [♠] and [♣] given above.

Definition 1. For a given behavior {Pab|xy}xy the measure of locality
µL and freedom of choice µF are defined as

µL := min
Pxy

max
FHV

∑
λ∈ΛL

Pλ, [12]

µF := min
Pxy

max
LHV

∑
λ∈ΛF

Pλ, [13]

where the maxima are taken respectively over all hidden-variable
models with freedom of choice (FHV) or all local hidden-variable
models (LHV) simulating given behavior {Pab|xy}xy , with a fixed
distribution of settings Pxy , minimized over any choice of the latter.

This definition follows the intuition of, respectively, locality
or free choice as properties that can be relaxed only to the
extent that is required to maintain the other assumption in every
experimental situation (i.e., for any distribution of measure-
ment settings Pxy). Formally, the measures µL and µF count the
maximal frequency of, respectively, local or free-choice events
optimized over all protocols simulating {Pab|xy}xy without vio-
lating of the other assumption (cf. Remark 1). The minimum
over all Pxy amounts to the worst-case scenario, which takes
into account the possibility that Pxy is a priori unspecified
(i.e., this amount of freedom is enough to simulate an experi-
ment with any arbitrary choice of distribution Pxy in compliance
with Eq. 7).

At first glance, even if conceptually appropriate, such a defi-
nition might seem too general to provide a manageable notion,
due to the range of experimental scenarios that need to be taken
into account (i.e., arbitrariness of Pxy). However, the situation

4 of 9 | PNAS
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considerably simplifies because of the following lemma (see
Materials and Methods for further discussion and proof). This
lemma also provides additional support for Definition 1.

Lemma 1. In both Eqs. 12 and 13 in Definition 1 the first minimum
can be omitted, i.e., we have

µL = max
FHV

∑
λ∈ΛL

Pλ, [14]

µF = max
LHV

∑
λ∈ΛF

Pλ, [15]

where the respective maxima are taken for some fixed nontrivial
distribution Pxy (i.e., the expression is insensitive to this choice
provided all settings are probed, Pxy 6= 0 for all x , y).

It is in this way that the present measure of locality µL extends
the notion of local fraction (27–32) to arbitrary experimental
behavior {Pab|xy}xy . Remarkably, the twin concept, which is the
measure of free choice µF , has not been considered at all. Per-
haps the reason for this omission is the issue of arbitrariness of
the distribution Pxy , for which there are nontrivial constraints
when freedom of choice is violated (note that for the measure
µL this problem does not occur). Those concerns can be dis-
missed only after the proper treatment in Lemma 1. This allows
a so-defined measure of free choice µF on a par with the more
familiar measure of locality µL.

So far the concepts of violation of locality and freedom of
choice, and the corresponding measures µL and µF , have been
kept separate. This is expected given their disparate charac-
ter. First, each concept plays a different role in the description
of an experiment and hence offers a different explanation for
any observed correlations, this is, direct influence (communi-
cation during the experiment) vs. measurement dependence
(employing common past for rigging measurement settings). Sec-
ond, on the level of causal modeling those assumptions are
expressed differently, Eq. 8 vs. Eq. 9. Third, violating free choice
gives rise to subtle issues regarding constraints on the distri-
bution of settings Pxy (as noted, these concerns are addressed
in Lemma 1).

Having brought all those issues to the spotlight, it is surprising
that the assumption of locality and free choice are intrinsically
connected. We now present the key result in this paper showing
the exchangeability of both concepts, while maintaining the same
degree of locality and freedom of choice so defined. It holds for
any number of settings x , y ∈M= {1, . . . ,M } (see Materials and
Methods for the proof).

Theorem 1. For a given behavior {Pab|xy}xy the degree of local-
ity and freedom of choice are the same, i.e., both measures in
Definition 1 coincide µL =µF .

This is a general structural theorem about causal modeling of
a given behavior {Pab|xy}xy . It means that the resources mea-
sured by the frequency of causal interventions of either sort,
required to explain an experimental statistics, are equally costly.
Thus, as far as the statistics is concerned, causal explanations
resorting either to violation of locality or free choice (or mea-
surement dependence) should be kept on an equal footing.
Preference should be guided by a better understanding of a par-
ticular situation (design of the experiment as well as ontological
commitments in its description).

Let us emphasize two features of Theorem 1. First, this is a
theory-independent result in the sense that it applies directly to
experimental statistics irrespective of the design or theoretical
framework behind the experiment (with the quantum predic-
tions being just one example). Second, the connection between
those two seemingly disparate quantities µL and µF has a practi-

cal advantage: Knowledge of one suffices to compute the other.
Both features are illustrated by the following results.

Nonsignaling Behavior with Binary Settings. Consider the case of
Bell’s experiment with only two measurement settings on each
side x , y ∈M= {0, 1}. Let us recall that nonsignaling of some
given behavior {Pab|xy}xy means that Alice cannot infer Bob’s
measurement setting (whether it is y = 0 or 1) from the statistics
on her side alone, i.e.,

Pa|x0 =
∑

b

Pab|x0 =
∑

b

Pab|x1 = Pa|x1 for all a, x , [16]

and similarly on Bob’s side (whether Alice chooses x = 0 or 1),
i.e.,

Pb|0y =
∑
a

Pab|0y =
∑
a

Pab|1y = Pb|1y for all b, y . [17]

Now, we can state another result which explicitly computes both
measures µL and µF in a surprisingly simple form (see Materials
and Methods for the proof).

Theorem 2. For a given nonsignaling behavior {Pab|xy}xy with
binary settings x , y ∈M= {0, 1} both measures of locality µL and
free choice µF from Definition 1 are equal to

µL = µF =

{
1
2
(4−Smax ) , if Smax > 2 ,

1 , otherwise,
[18]

where Smax = max {|Si | : i = 1, . . . , 4} is the maximum absolute
value of the four CHSH expressions in Eqs. 2–5.

We thus obtain a systematic method for assessing the degree
of locality and free choice directly from the observed statistics
{Pab|xy}xy without reference to the specifics of the experiment
(the only requirement is nonsignaling of the observed distri-
butions). In this sense, this is a general theory-independent
statement.

Overall, Theorem 2 allows an interpretation of the amount of
violation of the CHSH inequalities in Bell-type experiments as a
fraction of trials violating locality (granted freedom of choice) or
equivalently trials without freedom of choice (given locality).

The Quantum Case: Binary Settings and Beyond. Let us restrict our
attention to the special case of the quantum statistics. Notably,
various aspects of nonlocality have been extensively researched
in relation to the quantum-mechanical predictions; see refs.
4 and 5 for a review. This includes the notion of local frac-
tion (27–32), which is the same as measure µL here defined
for a general behavior {Pab|xy}xy . As noted, it may be thus
surprising that the equally natural measure of free choice µF

has not been explored. Theorem 1 bridges the gap between
those two seemingly disparate notions: There is no actual
need for separate study. We next review some crucial results
for the local fraction in the quantum-mechanical framework,
which allows us to make similar statements for the measure of
free choice µF .

We first observe that Theorem 2 can be readily applied to
the quantum-mechanical statistics (where nonsignaling holds).
In a Bell experiment, quantum probabilities obtain through the
standard formula Pab|xy =Tr [ ρPa

x ⊗Pb
y ], where ρ is a (bipartite)

mixed state with two projection-valued measures {Pa=±1
x } and

{Pb=±1
y } representing Alice and Bob’s choice of measurement

settings x , y ∈M= {0, 1}. Calculating the CHSH expressions
Eqs. 2 and 5 in each particular case is straightforward, which
gives explicitly the expression for both measures µL and µF via
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Eq. 18. The result of special significance concerns the famous
Tsirelson bound SQM

max = 2
√

2 for the maximal violation of the
CHSH inequalities in quantum mechanics (47). By virtue of The-
orem 2, this means that in order to locally recover the quantum
predictions in a Bell experiment with two settings Alice and Bob
can enjoy freedom of choice in the worst case, at most, with a
fraction µF = 2−

√
2≈ 0.59 of all trials (corresponding to the

choice of measurements on a maximally entangled state that sat-
urate the Tsirelson bound). Clearly, the same applies to local
fraction µL in a two-setting scenario.

Interestingly, relaxing the constraint on the number of settings
for Alice and Bob’s measurements x , y ∈M= {1, 2, 3, . . . ,M }
the quantum statistics forces us to further constrain, respectively,
locality or free choice. The case of local fraction µL with arbitrary
number of settings M →∞ has been thoroughly investigated for
statistics generated by quantum states. Let us refer to two inter-
esting results in the literature on local fraction µL which readily
translate via Theorem 1 to the measure of free choice µF . The
first one concerns the statistics of a maximally entangled state
(cf. refs. 27 and 29) (see SI Appendix for a direct proof).

Theorem 3. For every LHV model that explains the statistics of a
Bell experiment for a maximally entangled state the amount of free
choice tends to zero with increasing number of measurement settings
M , i.e., µF −→

M→∞
0.

Apparently, for less entangled states the amount of free-
dom increases, reaching the maximal value µF = 1 for separable
states. This is a consequence of the result in ref. 32, which explic-
itly computes the local fraction µL for all pure two-qubit states.
Stated for measure µF this takes the following form.

Theorem 4. For a pure two-qubit state, which by appropriate choice
of the basis can always be written in the form |ψ〉= cos θ

2
|00〉+

sin θ
2
|11〉 with θ∈ [0, π

2
], the amount of free choice is equal µF =

cos θ, whatever the choice and number of settings on Alice and
Bob’s side.

Note that both Theorem 3 and Theorem 4 assume a specific
form of behavior {Pab|xy}xy as obtained by the rules of quan-
tum theory. The theorems should be contrasted with Theorem
2, which is a theory-independent statement, not limited to a
particular theoretical framework.

Discussion
The ingenuity of Bell’s theorem lies in the fundamental nature
of the premises from which the result is derived. Within the
standard causal (or realist) approach, it is hard to assume less
about two agents than having free choice and their systems being
localized in space. Yet, in some experiments nature refutes the
possibility that both assumptions are concurrently true (8–15). It
is not easy to reject either one of them without carefully rethink-
ing the role of observers and how cause-and-effect manifests in
the world.¶ Our objective in this paper is this: Instead of pon-
dering the question of how this could be possible, we ask about
the extent to which a given assumption has to be relaxed in order
to maintain the other. Expressed more colloquially, it is natural
for a realist to ask what the cost is of trading one concept for
the other: Is it possible to save free choice by giving up on some
locality, or maybe is it better to forego a modicum of free choice in
exchange for locality? These questions can be compared on equal

¶We note that the conventional understanding of causality and the language of coun-
terfactuals has recently gained a solid mathematical basis; see e.g., the work of Pearl
(7). However, in view of the apparent difficulties with embedding quantum mechanics
in that framework, the standard approach to causality based on Reichenbach’s principle
or claims regarding spatiotemporal structure of events might need reassessment; see,
e.g., indefinite causal structures (23, 24) or retrocausality (25).

footing by computing a proportion of trials across the whole
experimental ensemble in which a given assumption must fail,
when the other holds at all times. Surprisingly, the answer can
be obtained by looking at the observed statistics alone (avoid-
ing the specifics of the experimental setup). The first question
was formulated in the quantum-mechanical context by Elitzur
et al. (27), who introduced the notion of local fraction further
elaborated in refs. 29–32 (see ref. 28 for an early indication of
these ideas). Here, we generalize this notion to arbitrary exper-
imental statistics (see also ref. 33). Furthermore, we answer the
second question by adopting a similar approach to measuring the
amount of free choice (which by analogy may be called free frac-
tion). The first main result, Theorem 1, compares such defined
measures in the general case (arbitrary statistics with any num-
ber of settings), showing that both assumptions are equally costly.
This demonstrates a deeper symmetry between locality and free
choice, which may come as a surprise, given our intuition of
a profound difference in the role these concepts play in the
description of an experiment.

In this paper, the notions of locality and free choice are under-
stood in the usual sense required to derive Bell’s theorem (6,
22). They are expressed in the standard causal model frame-
work (which subsumes realism) as unambiguous yes–no criteria
for each experimental trial (i.e., when all past variables are
fixed), determining whether there is a causal link between certain
variables in a model (without pondering its exact nature). The
measures µL and µF count the fraction of trials when such a con-
nection needs to be established, breaking locality or free choice,
respectively, in order to explain the observed statistics. This prob-
lem is prior to a discussion of how this actually occurs, which is
particularly relevant when the exact nature of the phenomenon
under study is obscured. Theorem 1 shows no intrinsic reason
for a realist to favor one assumption vs. the other. The minimal
frequency of the required causal influences of either sort, mea-
sured by µL and µF , is exactly the same. Notably, this is a general
result which holds for any behavior {Pab|xy}xy . What remains is
explicit calculation of those measures for a given experimental
statistics.

The second main result, Theorem 2, evaluates both measures
µL and µF for any nonsignaling behavior in a Bell experiment
with two outcomes and two settings. It provides a direct inter-
pretation to the amount of violation of the CHSH inequalities
(43). The key motivation behind this result is that the degree
by which the inequalities are violated has not been given tan-
gible interpretation so far, beyond its use as a binary test of
whether the inequalities are obeyed or not in study of Bell non-
locality. Furthermore, Theorem 2 has the advantage of being
theory-independent in the sense of being applicable to the exper-
imental statistics regardless of its theoretical origin (i.e., beyond
the quantum-mechanical framework). This makes it suitable
for quantitative assessment of the degree of locality and free
choice across different experimental situations, with prospec-
tive applications beyond physics, e.g., in neuroscience, cognitive
psychology, social sciences, or finance (48–52).

We also state two results, Theorem 3 and Theorem 4, for the
measure of free choice µF in the case of the quantum statistics
generated by the pure two-qubit states. Both are direct transla-
tion, via Theorem 1, of the corresponding results for the local
fraction µL (27–32).

It is worth noting a related idea of quantifying nonlocal-
ity through the amount of information transmitted between
the parties that is required to reproduce quantum correlations
(under free-choice assumption). Together with the development
of the specific models (53–57), this has led to various results
regarding communication complexity in the quantum realm (58).
However, in this paper we take a different perspective on mea-
suring nonlocality by changing the question from “how much” to
“how often” communication needs to be established between the
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parties to simulate given correlations. Theorem 2 gives the exact
bound in the case of nonsignaling statistics in the two-setting
and two-outcome Bell experiment. In the quantum case, such
a simulation requires communication in at least 41% of trials
[because of Tsirelson’s bound (47)] and for maximally entangled
states increases to 100% of trials when the number of settings is
arbitrary (cf. Theorems 3 and 4).

Natural as it may seem, the idea of measuring freedom of
choice by measure µF has not been developed in the literature.
The reason for this omission can be traced to the conceptual
and technical issues with handling arbitrariness of the distribu-
tion of settings Pxy . Those concerns are properly addressed in
the present paper with Lemma 1, which considerably simplifies
and supports Definition 1. We note that various measures have
been developed as a means of quantifying freedom of choice
(or measurement independence, as it is sometimes called). They
include maximal distance between distributions (35, 37), mutual
information (38, 42), or measurement-dependent locality (39–
41). Furthermore, some explicit models simulating correlations
in a singlet state with various degrees of measurement depen-
dence have been proposed (34, 36) and analyzed (e.g., see ref.
42 for comparison of causal vs. retrocausal models). However,
these attempts depart from the original understanding of the
free choice as introduced by Bell (6, 22) (i.e., strict indepen-
dence of choice from anything in the past) in favor of more
sophisticated information-theoretic accounts. Notably, the pro-
posed measure of free choice builds on Bell’s original framework
assessing the maximal frequency with which such a freedom can
be retained in a model strictly consistent with locality. It thus
benefits from a direct interpretation within the established causal
framework of Bell inequalities and has a clear-cut operational
meaning.

Regarding Theorem 3, which rules out any freedom of choice
so defined, it is interesting to take an adversarial perspective
on the problem of free choice in relation to quantum cryp-
tography and device-independent certification (59, 60). In this
narrative an eavesdropper controls the devices trying to simulate
the quantum statistics of a Bell test, which is impossible as long
as the parties enjoy freedom of choice. However, any breach of
the latter, i.e., control of measurement settings, shifts the bal-
ance in favor of the eavesdropper in her malicious task. Taking
the view that any causal influence comes with a cost or dan-
ger of being uncovered there are two diverging strategies that
reduce the cost/risk to be considered: 1) resort to the use of
control of choice as seldom as possible during the experiment
or 2) minimize the intensity of each act of control. Theorem 3
completely rules out the first possibility when simulating quan-
tum statistics, i.e., the eavesdropper needs to manipulate both
settings on each trial in order to simulate the quantum predic-
tions. The question about the intensity of the control is left open
in our discussion but amenable to information-theoretic meth-
ods (35–42). This gives additional security criteria for quantum
cryptography and device-independent certification by forcing the
eavesdropper to a more challenging sort of attack (not only
can she not miss a trial but also the control has to be subtle
enough).

We remark that the main Theorem 1 readily extends to the
case of larger number of parties and outcomes {Pabc...|xyz...}xyz....
This should be also possible for Theorem 2 when characteriza-
tion of the local polytope is known (cf. refs. 61–67). Yet another
valuable avenue for research in that case consists of complet-
ing the analysis to include signaling scenarios (68, 69). As for
the quantum case, we considered the simplest Bell-type scenario
with two parties involved in the experiment, but extensions may
prove even more surprising (see ref. 5 for a technical review of
the vast field of Bell nonlocality). In particular, in three-party
scenarios the methods discussed presently can be used to elimi-
nate freedom of choice already for two settings per party sharing

the Greenberger–Horne–Zeilinger state [cf. Mermin inequalities
which saturate in that case (70)]. We should also mention an
intriguing result (71) for a triangle quantum network in which
nonlocality can be proved with all measurements fixed. Remark-
ably, there is nothing to choose in that setup, but there is another
assumption of preparation independence which plays a crucial
role in the argument.

In this paper we are trying to remain impartial as to which
assumption—locality or free choice—is more important on the
fundamental level. This is certainly a strongly debated subject
in general, both among physicists and philosophers, with strong
supporters on each side (16–18). As just one example depreciat-
ing the role of freedom of choice let us quote Albert Einstein‖:
“Human beings, in their thinking, feeling and acting are not free
agents but are as causally bound as the stars in their motion.”
As a counterbalance, it is hard to resist the objection that was
eloquently stated by Nicolas Gisin (ref. 72, p. 90): “But for me,
the situation is very clear: not only does free will exist, but it
is a prerequisite for science, philosophy, and our very ability to
think rationally in a meaningful way.” Without entering into this
debate, we remark that both assumptions are interchangeable
on a deeper level. Namely, for a given experimental statistics
{Pab|xy}xy in a Bell-type experiment the measure of locality µL

and measure of free choice µF are exactly the same. This makes
an even stronger case regarding the inherent impossibility of
inferring causal structure from experimental statistics alone.

Materials and Methods
In order to facilitate the following discussion we begin with two technical
lemmas. See SI Appendix for the proofs.

The first one holds for a Bell experiment with arbitrary number of settings
x, y ∈M= {1, 2, 3, . . . , M}.

Lemma 2. For any behavior {Pab|xy}xy and distribution of settings Pxy there
exists a local hidden-variable model (LHV) which fully violates the freedom

of choice assumption (i.e., if Λ̃ is the relevant HV space, then we have Λ̃ =

Λ̃L = Λ̃NF ; cf. Eqs. 10 and 11).
The second one concerns a Bell scenario with binary settings x, y ∈M=

{0, 1}.

Lemma 3. Each nonsignaling behavior {Pab|xy}xy with binary settings x, y ∈
M= {0, 1} can be decomposed as a convex mixture of a local behavior
{P̄ab|xy}xy and a PR-box {P̃ab|xy}xy in the form

Pab|xy = p · P̄ab|xy + (1− p) · P̃ab|xy , [19]

with p = 1
2 (4− Smax) for all x, y ∈{0, 1}.

Recall that a PR-box (73) is a nonsignaling behavior for which one of
the CHSH expressions in Eqs. 2–5 reaches the maximal algebraic bound
of |Si|= 4. Here, local behavior means existence of an LHV + FHV model
of {P̄ab|xy}xy and Smax = max {|Si| : i = 1, . . . , 4}.

We are now ready to proceed with the proofs.

Proof of Lemma 1: Suppose we have an HV model [#] of some behavior
{Pab|xy}xy for some nontrivial distribution of settings Pxy . The latter obtains
via Eq. 7 from the conditional probabilities Pxy|λ which are related to prob-
abilities specified by the model, Pλ|xy and Pλ, by the usual Bayes’ rule. The
point at issue is whether a given HV model can simulate any other distribu-
tion of settings P̃xy via Eq. 7 by changing Pxy|λ P̃xy|λ, while keeping the
remaining components of the HV model (∗) intact. This requires consistency
with Bayes’ rule, i.e.,

P̃xy|λ =
Pλ|xy · P̃xy

Pλ
, [20]

which should be a well-defined probability distribution for each λ. Since
distributions Pλ|xy and Pλ are fixed by the HV model [#], then the distri-
bution of settings P̃xy is arbitrary as long as the expression in Eq. 20 is less
than 1 for each λ∈Λ (normalization is trivially fulfilled). Now, whenever
freedom of choice from Eq. 9 holds, this condition is always satisfied, and

‖Statement to the Spinoza Society of America, 22 September 1932. AEA 33–291.
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hence such an HV model can be trivially adjusted for any distribution P̃xy [by
redefining P̃xy|λ := P̃xy in compliance with Eq. 20 and keeping all of the
remaining components of the HV model [#] unchanged]. Of course, for FHV
models in the definition of µL in Eq. 12 this is the case, which thus entails
the simpler expression for µL in Eq. 14.

Clearly, such a simple argument falls apart for models without freedom
of choice, like those in the definition of µF in Eq. 13, when Pλ|xy and Pλ do
not cancel out and the probability in Eq. 20 may be ill-defined. In that case,
some deeper intervention into the model is required as shown below.

Let us take some LHV model [#] simulating a given behavior {Pab|xy}xy

with nontrivial distribution of settings Pxy . Then, the related HV space
decomposes as Λ = ΛF ]ΛNF and the degree of freedom is measured by
pF :=

∑
λ∈ΛF

Pλ (cf. Remark 1). Now, consider a restriction of the model

to the respective subspaces ΛF and ΛNF which amounts to the following
rescaling:

PF
λ := 1

pF
Pλ , PF

λ|xy := 1
pF

Pλ|xy , PF
ab|xyλ := Pab|xyλ, [21]

for λ∈ΛF , and similarly

PNF
λ := 1

1−pF
Pλ , PNF

λ|xy := 1
1−pF

Pλ|xy , PNF
ab|xyλ := Pab|xyλ, [22]

for λ∈ΛNF . Both are LHV models with marginals

PF
ab|xy =

∑
λ∈ΛF

PF
ab|xyλ · P

F
λ|xy , [23]

PNF
ab|xy =

∑
λ∈ΛNF

PNF
ab|xyλ · P

NF
λ|xy , [24]

which provide a convex decomposition of the original behavior
{Pab|xy}xy , i.e.,

Pab|xy = pF · PF
ab|xy + (1− pF ) · PNF

ab|xy . [25]

The crucial point is a careful adjustment of these two models to recover
some arbitrary distribution of settings P̃xy , while maintaining the respective
marginals Eqs. 23 and 24. For the first one (restriction to ΛF ) the situation
is trivial as explained above: Since it is a FHV model, then it suffice to rede-
fine P̃F

xy|λ := P̃xy (in compliance with Eq. 20) and leave all the rest intact. As
for the second one (restriction to ΛNF ), we can use Lemma 2 for constructing
another HV space Λ̃NF with an LHV model without any free choice that simu-
lates behavior {PNF

ab|xy}xy with the required distribution of settings P̃xy . Then,
such modified models can be stitched back together on the compound HV
space Λ̃ := ΛF ] Λ̃NF with respective weights pF and 1− pF . This guarantees
reconstruction of the original behavior {Pab|xy}xy (see Eq. 25) with the new
distribution of settings P̃xy . The model is local and has the same degree of
freedom equal to pF (the first component has full freedom of choice, while
in the second one it is entirely missing).

The above construction shows that for every LHV model of some behav-
ior {Pab|xy}xy there is always another one adjusted for any other distri-
bution of settings P̃xy with the same degree of freedom. This justifies
the simpler expression for µF in Eq. 15 and hence concludes the proof
of Lemma 1.

Proof of Theorem 1: Note that Lemma 1 Eqs. 14 and 15 can be taken as a
definition of measures µL and µF . This is very convenient, since it allows a
discussion free from any concerns about the distribution of settings Pxy (this
is particularly relevant in the case of µF as explained above).

It is instructive to observe that the calculation of both measures µL and
µF can be succinctly formulated as a convex optimization problem. Suppose,
we can decompose some given behavior {Pab|xy}xy as a mixture

Pab|xy = pL · PL
ab|xy + (1− pL) · PNL

ab|xy , [26]

where {PL
ab|xy}xy is a local behavior with full freedom of choice (i.e., has an

LHV + FHV model), and {PNL
ab|xy}xy is a free behavior (i.e., has an FHV model).

Also similarly, suppose that

Pab|xy = pF · PF
ab|xy + (1− pF ) · PNF

ab|xy , [27]

where {PF
ab|xy}xy is a local behavior with full freedom of choice (i.e., has an

LHV + FHV model) and {PNF
ab|xy}xy is a local behavior (i.e., has an LHV model).

In both cases we assume that 06 pL , pF 6 1, and both Eqs. 26 and 27 have
to hold for all a, b =±1 and x, y ∈M. Then, we have

Remark 2. Measures µL and µF evaluate the maxima over all possible
decompositions in Eqs. 26 and 27 of behavior {Pab|xy}xy , i.e.,

µL = max
decomp. (26)

pL, [28]

µF = max
decomp. (27)

pF . [29]

Proof:
We will justify only Eq. 28, since the argument for Eq. 29 is analogous.

Let us observe that every HV model [#] of behavior {Pab|xy}xy as described
by Eq. 6 splits into two components (cf. Eq. 10):

Pab|xy =
∑
λ∈ΛL

Pab|xyλ · Pλ

︸ ︷︷ ︸
pL · PL

ab|xy

+
∑
λ∈ΛNL

Pab|xyλ · Pλ|xy

︸ ︷︷ ︸
(1−pL ) · PNL

ab|xy

, [30]

which defines decomposition of the type in Eq. 26 with pL :=
∑
λ∈ΛL

Pλ.

Therefore, by Eq. 14, we get µL6maxdecomp. (26) pL.
To see the reverse, we note that every decomposition of the type in Eq.

26 implies existence of an LHV + FHV model of behavior {PL
ab|xy}xy on some

HV space Λ̃L and a FHV model of behavior {PNL
ab|xy}xy on some HV space Λ̃NL.

Those two models, when combined on a compound HV space Λ := Λ̃L ] Λ̃NL

with the respective weights pL and 1− pL , provide an HV model of behavior
{Pab|xy}xy . Since the local domain of such a model contains Λ̃L, then from
Eq. 14 we have µL> pL, which entails µL>maxdecomp. (26) pL. This concludes
the proof of Eq. 28. �

Now, in order to prove Theorem 1 it is enough to show that for every
decomposition of the type in Eq. 26 there exists a decomposition of the type
in Eq. 27 with the same weight pL = pF , and vice versa. A closer look at both
expressions reveals that behaviors {PL

ab|xy}xy and {PF
ab|xy}xy are both local

with full freedom of choice (i.e., share the same LHV + FHV model). Thus,
the problem can be reduced to justifying that 1) behavior {PNL

ab|xy}xy also

has an LHV model (possibly a non-FHV model) and 2) behavior {PNF
ab|xy}xy

also has an FHV model (possibly a non-LHV model).
Ad. 1: This readily follows from Lemma 2.
Ad. 2: Here, a trivial model will suffice. Let us take Λ := {λo} (a single-

element set) with Pλo ≡ Pλo|xy := 1 and conditional distribution defined as
Pab|xyλo := PNF

ab|xy . Clearly, it is an FVH model of behavior {PNF
ab|xy}xy .

Thus, we have shown equivalence of both decompositions Eqs. 26 and 27,
which, by virtue of Remark 2, proves Theorem 1.

Proof of Theorem 2: By virtue of Theorem 1 it suffices to prove the result for
one of the measures. Let it be measure µL evaluated by Eq. 28 in Remark 2.

Consider some arbitrary decomposition Eq. 26 of behavior {Pab|xy}xy .
Then, by linearity, the four CHSH expressions Eqs. 2–5 decompose as well,
i.e., we get

Si = pL · SL
i + (1− pL) · SNL

i , [31]

where SL
i and SNL

i are calculated for the respective behaviors {PL
ab|xy}xy and

{PNL
ab|xy}xy . Since the first one is a local behavior with full freedom of choice

(i.e., having an LHV + FHV model), then from the CHSH inequalities Eq.
1 we have |SL

i | 6 2. For the second one there is nothing interesting to
be said other than noting the maximal algebraic bound |SNL

i | 6 4. As a
consequence, the following inequality obtains:

|Si| 6 pL · 2 + (1− pL) · 4 = 4− 2 pL, [32]

and we get pL6 1
2 (4− |Si|). Thus, by assumed arbitrariness of decomposi-

tion, Eq. 26 gives the upper bound on expression in Eq. 28:

µL 6 1
2 (4− |Si|), [33]

where Smax = max {|Si| : i = 1, . . ., 4}. By Lemma 3 we conclude that the
bound is tight, which ends the proof of Theorem 2.

Data Availability. There are no data underlying this work.
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17. F. Laloë, Do We Really Understand Quantum Mechanics? (Cambridge University Press,

ed. 2, 2019).
18. T. Norsen, Foundations of Quantum Mechanics: An Exploration of the Physical

Meaning of Quantum Theory (Undergraduate Lecture Notes in Physics, Springer,
2017).

19. C. J. Wood, R. W. Spekkens, The lesson of causal discovery algorithms for quantum
correlations: Causal explanations of bell-inequality violations require fine-tuning.
New J. Phys. 17, 033002 (2015).

20. R. Chaves, R. Kueng, J. B. Brask, D. Gross, Unifying framework for relaxations
of the causal assumptions in Bell’s theorem. Phys. Rev. Lett. 114, 140403
(2015).

21. E. G. Cavalcanti, Classical causal models for Bell and Kochen-Specker inequality
violations require fine-tuning. Phys. Rev. X 8, 021018 (2018).

22. R. Colbeck, R. Renner, A short note on the concept of free choice. arXiv [Preprint]
(2013). https://arxiv.org/abs/1302.4446 (Accessed 31 March 2021).

23. C. Brukner, Quantum causality. Nat. Phys. 10, 259–263 (2014).
24. J. M. A. Allen, J. Barrett, D. Horsman, C. M. Lee, R. W. Spekkens, Quantum common

causes and quantum causal models. Phys. Rev. X 7, 031021 (2017).
25. K. B. Wharton, N. Argaman, Colloquium: Bell’s theorem and locally medi-

ated reformulations of quantum mechanics. Rev. Mod. Phys. 92, 021002
(2020).

26. T. Norsen, Against ‘realism’. Found. Phys. 37, 311–340 (2007).
27. A. C. Elitzur, S. Popescu, D. Rohrlich, Quantum nonlocality for each pair in an

ensemble. Phys. Lett. A 162, 25–28 (1992).
28. L. Hardy, A new way to obtain Bell inequalities. Phys. Lett. A 161, 21–25 (1991).
29. J. Barrett, A. Kent, S. Pironio, Maximally nonlocal and monogamous quantum

correlations. Phys. Rev. Lett. 97, 170409 (2006).
30. R. Colbeck, R. Renner, Hidden variable models for quantum theory cannot have any

local part. Phys. Rev. Lett. 101, 050403 (2008).
31. R. Colbeck, R. Renner, “The completeness of quantum theory for predicting mea-

surement outcomes” in Quantum Theory: Informational Foundations and Foils,
G. Chiribella, R. W. Spekkens, Eds. (Springer, 2016), pp. 497–528.

32. S. Portmann, C. Branciard, N. Gisin, Local content of all pure two-qubit states. Phys.
Rev. A 86, 012104 (2012).

33. S. Abramsky, R. S. Barbosa, S. Mansfield, Contextual fraction as a measure of
contextuality. Phys. Rev. Lett. 119, 050504 (2017).

34. C. H. Brans, Bell’s theorem does not eliminate fully causal hidden variables. Int. J.
Theor. Phys. 27, 219–226 (1988).

35. M. J. W. Hall, Local deterministic model of singlet state correlations based on relaxing
measurement independence. Phys. Rev. Lett. 105, 250404 (2010).

36. M. J. W. Hall, “The significance of measurement independence for Bell inequalities
and locality” in At the Frontier of Spacetime, T. Asselmeyer-Maluga, Ed. (Springer,
2016), pp. 189–204.

37. M. J. W. Hall, Relaxed Bell inequalities and Kochen-Specker theorems. Phys. Rev. A 84,
022102 (2011).

38. J. Barrett, N. Gisin, How much measurement independence is needed to demonstrate
nonlocality? Phys. Rev. Lett. 106, 100406 (2011).
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